Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 123
Filter
1.
J Hazard Mater ; 470: 134164, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38583200

ABSTRACT

Strawberry, a globally popular crop whose fruit are known for their taste and health benefits, were used to evaluate the effects of polyethylene microplastics (PE-MPs) on plant physiology and fruit quality. Plants were grown in 2-L pots with natural soil mixed with PE-MPs at two concentrations (0.2% and 0.02%; w/w) and sizes (⌀ 35 and 125 µm). Plant physiological responses, root histochemical and anatomical analyses as well as fruit biometric and quality features were conducted. Plants subjected to ⌀ 35 µm/0.2% PE-MPs exhibited the most severe effects in terms of CO2 assimilation due to stomatal limitations, along with the highest level of oxidative stress in roots. Though no differences were observed in plant biomass, the impact on fruit quality traits was severe in ⌀ 35 µm/0.2% MPs treatment resulting in a drop in fruit weight (-42%), soluble solid (-10%) and anthocyanin contents (-25%). The smallest sized PE-MPs, adsorbed on the root surface, impaired plant water status by damaging the radical apparatus, which finally resulted in alteration of plant physiology and fruit quality. Further research is required to determine if these alterations also occur with other MPs and to understand more deeply the MPs influence on fruit physio-chemistry.


Subject(s)
Fragaria , Fruit , Microplastics , Plant Roots , Polyethylene , Fragaria/drug effects , Plant Roots/drug effects , Plant Roots/growth & development , Plant Roots/metabolism , Fruit/drug effects , Polyethylene/toxicity , Microplastics/toxicity , Soil Pollutants/toxicity , Anthocyanins/analysis , Oxidative Stress/drug effects
2.
BMC Plant Biol ; 24(1): 179, 2024 Mar 08.
Article in English | MEDLINE | ID: mdl-38454341

ABSTRACT

An experiment was conducted in a greenhouse to determine the effects of different supplemental light spectra on the growth, nutrient uptake, and fruit quality of four strawberry cultivars. The plants were grown under natural light and treated with blue (460 nm), red (660 nm), and red/blue (3:1) lights. Results showed that the "Parous" and "Camarosa" had higher fresh and dry mass of leaves, roots, and crowns compared to the "Sabrina" and "Albion". The use of artificial LED lights improved the vegetative growth of strawberry plants. All three supplemental light spectra significantly increased the early fruit yield of cultivars except for "Parous". The red/blue supplemental light spectrum also increased the fruit mass and length of the "Albion". Supplemental light increased the total chlorophyll in "Camarosa" and "Albion", as well as the total soluble solids in fruits. The "Albion" had the highest concentration of fruit anthocyanin, while the "Sabrina" had the lowest. The use of supplemental light spectra significantly increased the fruit anthocyanin concentration in all cultivars. Without supplemental light, the "Camarosa" had the lowest concentration of K and Mg, which increased to the highest concentration with the use of supplemental light spectra. All three spectra increased Fe concentration to the highest value in the "Sabrina", while only the red/blue light spectrum was effective on the "Camarosa". In conclusion, the use of supplemental light can increase the yield and fruit quality of strawberries by elevating nutrients, chlorophyll, and anthocyanin concentrations in plants.


Subject(s)
Anthocyanins , Fragaria , Fruit , Light , Chlorophyll
3.
Plants (Basel) ; 13(5)2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38475410

ABSTRACT

The octoploid-cultivated strawberry variety Benihope (Fragaria × ananassa Duch cv. Benihope) is an important commercial plant. It is highly susceptible to different diseases, which ultimately leads to a reduction in yield. Gene-editing methods, such as CRISPR/Cas9, demonstrate potential for improving disease resistance in the strawberry cv. Benihope. Establishing a plant regeneration system suitable for CRISPR/Cas9 gene editing is crucial for obtaining transgenic plants on a large scale. This research established a callus induction and plant regeneration system for Agrobacterium-mediated CRISPR/Cas9 gene editing in strawberry cv. Benihope by evaluating multiple types of explants and various plant growth regulators throughout the entire tissue culture process. The results showed that the efficiency of callus induction is strongly influenced by the type of explant and is highly sensitive to the combination of plant growth regulators. Among the different plant growth regulators employed, thidiazuron (TDZ), in combination with 2,4-dichlorophenoxyacetic acid (2,4-D), effectively induced callus formation and plant regeneration from explants derived from nutrient tissues such as runner tips and crowns. In addition, the regeneration experiment demonstrated that the addition of polyvinylpyrrolidone (PVPP) to the shoot regeneration medium could inhibit tissue browning. The gene-edited plants in which some or all of the Fvb7-1, Fvb7-2, Fvb7-3, and Fvb7-4 genes in the MLO (Mildew resistance Locus O) gene family were knocked out by CRISPR/Cas9 system were obtained by applying the plant regeneration system developed in this study.

4.
Plant Mol Biol ; 114(2): 32, 2024 Mar 21.
Article in English | MEDLINE | ID: mdl-38512490

ABSTRACT

Salinity is a pivotal abiotic stress factor with far-reaching consequences on global crop growth, yield, and quality and which includes strawberries. R2R3-MYB transcription factors encompass a range of roles in plant development and responses to abiotic stress. In this study, we identified that strawberry transcription factor FaMYB63 exhibited a significant upregulation in its expression under salt stress conditions. An analysis using yeast assay demonstrated that FaMYB63 exhibited the ability to activate transcriptional activity. Compared with those in the wild-type (WT) plants, the seed germination rate, root length, contents of chlorophyll and proline, and antioxidant activities (SOD, CAT, and POD) were significantly higher in FaMYB63-overexpressing Arabidopsis plants exposed to salt stress. Conversely, the levels of malondialdehyde (MDA) were considerably lower. Additionally, the FaMYB63-overexpressed Arabidopsis plants displayed a substantially improved capacity to scavenge active oxygen. Furthermore, the activation of stress-related genes by FaMYB63 bolstered the tolerance of transgenic Arabidopsis to salt stress. It was also established that FaMYB63 binds directly to the promoter of the salt overly sensitive gene SOS1, thereby activating its expression. These findings identified FaMYB63 as a possible and important regulator of salt stress tolerance in strawberries.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Gene Expression Regulation, Plant , Plants, Genetically Modified , Salt Tolerance , Sodium-Hydrogen Exchangers , Transcription Factors , Arabidopsis/genetics , Arabidopsis/physiology , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Plants, Genetically Modified/genetics , Plants, Genetically Modified/physiology , Salt Tolerance/genetics , Sodium-Hydrogen Exchangers/genetics , Transcription Factors/genetics , Transcription Factors/metabolism , Fragaria/genetics
5.
J Sci Food Agric ; 104(4): 2272-2283, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-37947475

ABSTRACT

BACKGROUND: Dietary interventions are crucial in modulating inflammation in humans. Strawberries are enjoyed by people of different ages as a result of their attractive phenotype and taste. In addition, the active compounds in strawberries may contribute to the reduction of inflammation. When developing new strawberry cultivars to address agricultural and environmental threats, the bioactivity of strawberries must be improved to maintain their health benefits. RESULTS: We determined the phytochemical contents of extracts from a new Korean strawberry cultivar, with the CN7 cultivar extract possessing the highest total polyphenol and flavonoid contents compared to the CN5 and Seolhyang cultivar extracts. The new Korean strawberry cultivars reduced the expression of inflammatory-related genes in lipopolysaccharide (LPS)-induced RAW264.7 cells via the nuclear factor-kappa B signaling pathway, indicating an anti-inflammatory effect. The CN7 cultivar showed greater bioactivity potential and the highest ellagic acid content; hence, we assessed the effect of the CN7 cultivar in an LPS-stimulated mouse model. The CN7 cultivar treatment demonstrated its effectiveness in reducing inflammation via the downregulation of inflammatory cytokines secretion and gene expression. CONCLUSION: The results obtained in the present study have revealed the observable differences of the newly developed strawberry cultivars with Seolhyang in mitigating inflammation induced by LPS. The enhanced phytochemical content of the CN7 cultivar extract may contribute to its improved anti-inflammatory effect. Therefore, it is crucial to maintain the nutritive benefits of strawberry during the development of new cultivation. © 2023 Society of Chemical Industry.


Subject(s)
Fragaria , Animals , Mice , Humans , Fragaria/chemistry , Lipopolysaccharides , Fruit/chemistry , Inflammation/drug therapy , Inflammation/genetics , Inflammation/metabolism , Phytochemicals/metabolism , Plant Extracts/analysis , Anti-Inflammatory Agents/metabolism , Macrophages , Republic of Korea
6.
Front Microbiol ; 14: 1286740, 2023.
Article in English | MEDLINE | ID: mdl-38033596

ABSTRACT

Introduction: Strawberry (Fragaria × ananassa Duch.) holds a preeminent position among small fruits globally due to its delectable fruits and significant economic value. However, strawberry cultivation is hampered by various plant diseases, hindering the sustainable development of the strawberry industry. The occurrence of plant diseases is closely linked to imbalance in rhizosphere microbial community structure. Methods: In the present study, a systematic analysis of the differences and correlations among non-culturable microorganisms, cultivable microbial communities, and soil nutrients in rhizosphere soil, root surface soil, and non-rhizosphere soil of healthy and diseased strawberry plants affected by root rot was conducted. The goal was to explore the relationship between strawberry root rot occurrence and rhizosphere microbial community structure. Results: According to the results, strawberry root rot altered microbial community diversity, influenced fungal community composition in strawberry roots, reduced microbial interaction network stability, and enriched more endophytic-phytopathogenic bacteria and saprophytic bacteria. In addition, the number of bacteria isolated from the root surface soil of diseased plants was significantly higher than that of healthy plants. Discussion: In summary, the diseased strawberry plants changed microbial community diversity, fungal species composition, and enriched functional microorganisms significantly, in addition to reshaping the microbial co-occurrence network. The results provide a theoretical basis for revealing the microecological mechanism of strawberry root rot and the ecological prevention and control of strawberry root rot from a microbial ecology perspective.

7.
Plants (Basel) ; 12(17)2023 Aug 31.
Article in English | MEDLINE | ID: mdl-37687384

ABSTRACT

Chilling injury can adversely affect strawberry bud differentiation, pollen vitality, fruit yield, and quality. Photosynthesis is a fundamental process that sustains plant life. However, different strawberry varieties exhibit varying levels of cold adaptability. Quantitatively evaluating the physiological activity of the photosynthetic system under low-temperature chilling injury remains a challenge. In this study, we investigated the effects of different levels of chilling stress on twenty photosynthetic fluorescence parameters in strawberry plants, using short-day strawberry variety "Toyonoka" and day-neutral variety "Selva" as representatives. Three dynamic chilling treatment levels (20/10 °C, 15/5 °C, and 10/0 °C) and three durations (3 days, 6 days, and 9 days) were applied to each variety. WUE, LCP, Y(II), qN, SIFO2-B and rSIFO2-B were selected as crucial indicators of strawberry photosynthetic physiological activity. Subsequently, we constructed a comprehensive score to assess the strawberry photosynthetic system under chilling injury and established a hyperspectral inversion model for stress quantification. The results indicate that the short-day strawberry "Toyonoka" exhibited a recovery effect under continuous 20/10 °C treatment, while the day-neutral variety "Selva" experienced progressively worsening stress levels across all temperature groups, with stress severity higher than that in "Toyonoka". The BPNN model for the comprehensive assessment of the strawberry photosynthetic system under chilling injury showed optimal performance. It achieved a stress level prediction accuracy of 71.25% in 80 validation samples, with an R2 of 0.682 when fitted to actual results. This study provides scientific insights for the application of canopy remote sensing diagnostics of strawberry photosynthetic physiological chilling injury in practical agricultural production.

8.
Foods ; 12(17)2023 Aug 22.
Article in English | MEDLINE | ID: mdl-37685076

ABSTRACT

White-fruited strawberry cultivars have recently become popular due to their exotic appearance and flavor, but more needs to be known about their overall quality and postharvest performance. The objective of this study was to characterize and compare the overall quality of the white-fruited strawberry Florida Pearl® 'FL 16.78-109' against the commercial, red-fruited strawberry 'Florida Brilliance' at harvest and during cold storage (1 °C). Results showed that harvest date and weather conditions contributed to significant differences in fruit quality, regardless of the cultivar. However, Pearl was softer at harvest and had lower total phenolic and anthocyanin contents but was less acidic and had higher total sugars and ascorbic acid contents than Brilliance. Pearl major polyphenols were kaempferol 3-glucoside, quercetin 3-glucoside, quercetin, and gallic acid, while for Brilliance epicatechin, pelargonidin, pelargonidin 3-glucoside, and ferulic acid were the major polyphenol compounds identified. After cold storage, Pearl lost less weight than Brilliance and showed a less dramatic decline in individual polyphenols. Pearl and Brilliance anthocyanins and phenolic acids were the polyphenol groups most affected by cold storage because they showed the highest decline from harvest to the end of storage. Cold storage also had different effects on other polyphenols, but the effect was cultivar-dependent. Overall, white strawberries have a unique appearance, are sweet, have an excellent bioactive profile, and can maintain good postharvest quality.

9.
BMC Plant Biol ; 23(1): 400, 2023 Aug 23.
Article in English | MEDLINE | ID: mdl-37608364

ABSTRACT

BACKGROUND: Strawberries are one of the most widely cultivated fruits in the world, and their popularity continues to grow due to their unique taste, high nutritional value, and numerous health benefits. The success of strawberry cultivation depends largely on the quality of the growing media used. In recent years, there has been a growing interest in soilless media as a sustainable alternative to traditional soil-based growing methods. This study aimed to compare the effect of different growing media, both soil and soilless (Hydroponic Production System) media, on the fruit quality and phytochemical contents of two cultivars of strawberry (Yellow Wonder and Camarosa) in a greenhouse. RESULTS: The values of Fruit weight, fruit firmness, and SSC were higher in soilless media than in soil media. In addition, 'Camarosa' was higher than 'Yellow Wonder' in these characteristics. The rates of glucose and fructose were higher in soil media than soilless media, and 'Yellow Wonder' was higher than 'Camarosa' in the rates of glucose and fructose. The values of total phenolic content and antioxidant capacity were higher in soil media, and also 'Yellow Wonder' was found to have more total phenolic content and antioxidant capacity than 'Camarosa'. In terms of mineral contents, 'Yellow Wonder' had higher values than 'Camrosa' in both media. When the results of the study were examined in general, Camarosa red strawberry variety was found to be higher than 'Yellow Wonder' in pomological characteristics. CONCLUSIONS: Pomological values increased in both strawberry cultivar in soilless media. In terms of phytochemical properties, the 'Yellow Wonder' had higher values than the 'Camarosa'. Also, Phytochemical contents were higher in the soil media compared to the soilless media.


Subject(s)
Fragaria , Antioxidants , Fructose , Glucose , Phytochemicals , Soil
10.
Metabolites ; 13(8)2023 Jul 28.
Article in English | MEDLINE | ID: mdl-37623838

ABSTRACT

Cotinus coggygria Scop. (smoketree) and Fragaria × ananassa Duch. (strawberry) are two industrially important species due to their composition in bioactive compounds. In this study, we investigated the effects of acute low-dose gamma irradiation (15, 20, 25, 30, 35 and 40 Gy) on two red callus cultures established in smoketree and strawberry. The biomass production, dry weight, content of phenols, flavonoids, monomeric anthocyanins', index of anthocyanins polymerization and antioxidant activity were evaluated. For the smoketree callus, a negative correlation between irradiation doses and callus biomass accumulation was observed. For the strawberry callus, irradiation did not significantly affect the accumulation of the biomass. An increased dry weight was observed in irradiated smoketree callus, while for treated strawberry callus, a decrease was recorded. Irradiation with 30 Gy was stimulative for polyphenols' accumulation in both cultures; however, the increase was significant only in the strawberry callus. The flavonoids increased in the 30 Gy strawberry variants, while it significantly decreased in smoketree callus irradiated with 35 and 40 Gy. In irradiated strawberry callus, except for the 25 Gy variant (1.65 ± 0.4 mg C-3-GE/g DW), all treatments caused an increase in anthocyanins' accumulation. In smoketree, except for the 15 Gy variant (2.14 ± 0.66 mg C-3-GE/g DW), the irradiation determined an increase in anthocyanins synthesis, with the highest value being seen in the 20 Gy variant (2.8 ± 0.94 mg C-3-GE/g DW). According to UPLC-HRMS investigations, an unidentified compound increased by 99% at the 30 Gy dose in strawberry callus, while in smoketree, maslinic acid increased by 51% after irradiation with 40 Gy. The results of this study showed, for the first time, the differential response of two performant callus cultures to low-dose gamma irradiation, a biotechnological method that can be used to stimulate the synthesis of important flavonoids and triterpenes.

11.
Plants (Basel) ; 12(14)2023 Jul 14.
Article in English | MEDLINE | ID: mdl-37514263

ABSTRACT

Strawberries are produced in tropical regions using imported cultivars adapted to temperate and subtropical climates. These cultivars, under tropical conditions, produce below their genetic potential. Through multivariate analyses, the objective was to evaluate and select short-day strawberry genotypes based on intraspecific crosses, product characteristics, and fruit quality. The genotypes were obtained from the cross between 'Camino Real' (female parent) and the first-generation genotypes RVCA16, RVCS44, RVFS06, RVFS07, and RVDA11 (male parent), obtained in previous selections. The experimental design consisted of augmented blocks with standard controls, consisting of first-generation genotypes and commercial cultivars. The fruits were harvested and evaluated for productivity and post-harvest characteristics: total fruit mass (MTF), total number of fruits (TFN), average fruit mass (AFM), commercial fruit mass (CFM), fruit commercial number (CFN), average commercial mass of fruits (ACFM), total soluble solids (TSS), firmness (F), brightness (L), hue angle (°Hue), and chroma (C). The selection index of Mulamba and Mock (1978) was used with an intensity of 3% to obtain superior genotypes and submitted to multivariate analysis for comparative purposes. Of the 1500 genotypes evaluated, it was possible to select 44 genotypes with characteristics superior to the 13 controls. The RVDA11CR59 genotype showed better values for the attributes of interest, but the RVCS44CR population, from the cross between 'Camino Real' × RVCS44 ('Camarosa' × 'Sweet Charlie'), obtained the highest number (16) of individuals among those selected. Significant traits had high heritability but were not necessarily reflected in high selection gain. Coefficients of genetic variation were high, indicating sufficient genetic variability to select genotypes for these traits. When multivariate analyses were used, it was possible to group the selected genotypes into the same cluster according to the similarity and balance in the responses to the evaluated variables, demonstrating that these analyses help other parameters choose superior genotypes. The multivariate analysis allowed the selection of more balanced genotypes for production and post-harvest traits for tropical climates.

12.
J Exp Bot ; 74(12): 3595-3612, 2023 06 27.
Article in English | MEDLINE | ID: mdl-37133320

ABSTRACT

Plant architecture plays a major role in flowering and therefore in crop yield. Attempts to visualize and analyse strawberry plant architecture have been few to date. Here, we developed open-source software combining two- and three-dimensional representations of plant development over time along with statistical methods to explore the variability in spatio-temporal development of plant architecture in cultivated strawberry. We applied this software to six seasonal strawberry varieties whose plants were exhaustively described monthly at the node scale. Results showed that the architectural pattern of the strawberry plant is characterized by a decrease of the module complexity between the zeroth-order module (primary crown) and higher-order modules (lateral branch crowns and extension crowns). Furthermore, for each variety, we could identify traits with a central role in determining yield, such as date of appearance and number of branches. By modeling the spatial organization of axillary meristem fate on the zeroth-order module using a hidden hybrid Markov/semi-Markov mathematical model, we further identified three zones with different probabilities of production of branch crowns, dormant buds, or stolons. This open-source software will be of value to the scientific community and breeders in studying the influence of environmental and genetic cues on strawberry architecture and yield.


Subject(s)
Fragaria , Inflorescence , Fragaria/genetics , Plant Development , Meristem , Spatio-Temporal Analysis
13.
Foods ; 12(9)2023 Apr 26.
Article in English | MEDLINE | ID: mdl-37174341

ABSTRACT

Abscisic acid (ABA) plays a crucial role in regulating the ripening of non-climacteric strawberry fruit. In the present study, ABA was confirmed to promote strawberry ripening and induce the down-regulation of FaMADS1. The transient silence of FaMADS1 in strawberries promoted fruit ripening and induced the content of anthocyanin and soluble pectin but reduced firmness and protopectin through a tobacco rattle virus-induced gene silencing technique. In parallel with the accelerated ripening, the genes were significantly induced in the transiently modified fruit, including anthocyanin-related PAL6, C4H, 4CL, DFR, and UFGT, softening-related PL and XTH, and aroma-related QR and AAT2. In addition, the interaction between FaMADS1 and ABA-related transcription factors was researched. Yeast one-hybrid analysis indicated that the FaMADS1 promoter could interact with FaABI5-5, FaTRAB1, and FaABI5. Furthermore, dual-luciferase assay suggested that FaTRAB1 could actively bind with the FaMADS1 promoter, resulting in the decreased expression of FaMADS1. In brief, these results suggest that the ABA-dependent ripening of strawberry fruit was probably inhibited through inhibiting FaMADS1 expression by the active binding of transcript FaTRAB1 with the FaMADS1 promoter.

14.
Plants (Basel) ; 12(9)2023 May 04.
Article in English | MEDLINE | ID: mdl-37176939

ABSTRACT

Volatile Organic Compounds (VOCs) over the harvest period have been assessed in twenty-five strawberry genotypes cultivated in western Greece. Using liquid-liquid extraction and gas chromatography-mass spectrometry (GC--MS), twenty-eight volatiles were monitored at early (T1) and mid-harvest (T3) time points to investigate the effect of the genotype and harvest time on strawberry volatilome. A quantitative impact of both harvest date and genotype on VOCs associated with aroma was demonstrated, with the most significant VOCs being terpenes, esters, and acids, followed by lactones and furanones. Harvest date was crucial for terpenoid and phenylpropanoid content, and important for esters, short-chain acids, and lactones. Six out of the twenty-five genotypes (four commercial varieties, including 'Rociera', 'Victory', 'Leyre', and 'Inspire', and two advanced selection genotypes (G2 and G8) were evaluated at two additional time points, covering the entire harvest season. The volatile levels were higher in fruits harvested at early stages (T1-T2) for most of the genotypes examined. The G2 genotype turned out to have a less ample but more stable volatile profile throughout harvesting, while 'Victory', 'Leyre', and 'Inspire' exhibited less abrupt changes than 'Rociera'. This study demonstrates that the determination of VOCs provides significant information regarding the differences in strawberry genotypes related to aroma and enables the selection of genotypes based on specific VOCs content and/or volatile stability over the harvest period. Furthermore, this study pinpoints that growers could opt for optimal harvest dates based on the genotypes and the VOC content.

15.
PeerJ ; 11: e15402, 2023.
Article in English | MEDLINE | ID: mdl-37193026

ABSTRACT

Fruit cracking is a commercially important disorder that reduces both quantity and quality of strawberries (Fragaria × ananassa Duch.). The objective was to identify the physiological mechanism of cracking and the factors affecting cracking. Cracking is more common in necked than in normal-shaped fruit. Most macroscopic cracks ('macrocracks') occur in the seedless neck. Large fruit is more cracking susceptible than medium size or small fruit. Macrocrack orientation is predominantly latitudinal in the proximal region of the neck and longitudinal in the mid and distal regions of the neck. The neck region of necked fruit has a thicker cuticle than the body of necked or normal-shaped fruit. The vascular bundles in the neck (seedless) are orientated longitudinally, while those in the body (with seeds) are both longitudinal and radial. Epidermal cells in the neck region are elongated longitudinally, with those in the proximal region of the neck being more elongated than those in the mid or distal regions of the neck. Cuticular microcracking was more severe in necked fruit than in normal-shaped fruit. The orientations of the microcracks matched those of the macrocracks, i.e., latitudinal in the proximal neck and longitudinal in the mid and distal neck regions. Following artificial incisions (blade), gaping was significantly more pronounced in necked than in normal-shaped fruit. Incubation of fruit in deionized water induced macrocracks in about 75% of fruit. Necked fruit cracked more than normal-shaped fruit. Most macrocracks were oriented latitudinally in the proximal neck and longitudinally in the distal neck regions. The results indicate cracking results from excessive growth strains which are further increased by surface water uptake.


Subject(s)
Fragaria , Fruit , Neck , Seeds , Water
16.
Plants (Basel) ; 12(5)2023 Mar 01.
Article in English | MEDLINE | ID: mdl-36903969

ABSTRACT

Somaclonal variations in tissue cultures can be used in plant breeding programs. However, it is still unclear whether somaclonal variations and their original parent have differences in volatile compounds, and the candidate genes which result in the differences in volatile compounds also need to be identified. In this study, we utilized the 'Benihoppe' strawberry and its somaclonal mutant 'Xiaobai', which has different fruit aromas compared with 'Benihoppe', as research materials. Using HS-SPME-GC-MS, 113 volatile compounds have been identified in the four developmental periods of 'Benihoppe' and 'Xiaobai'. Among them, the quantity and content of some unique esters in 'Xiaobai' were much higher than that in 'Benihoppe'. In addition, we found that the contents and odor activity values of ethyl isovalerate, ethyl hexanoate, ethyl butyrate, ethyl pentanoate, linalool, and nerolidol in the red fruit of 'Xiaobai' were much higher compared with 'Benihoppe', which may result from the significantly increased expression of FaLOX6, FaHPL, FaADH, FaAAT, FaAAT1, FaDXS, FaMCS, and FaHDR in 'Xiaobai'. However, the content of eugenol in 'Benihoppe' was higher than that in 'Xiaobai', which may result from the higher expression of FaEGS1a in 'Benihoppe' compared with 'Xiaobai'. The results provide insights into the somaclonal variations that affect the volatile compounds in strawberries and can be used for strawberry quality improvement.

17.
Plant Physiol Biochem ; 196: 186-196, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36724703

ABSTRACT

The non-climacteric octoploid strawberry (Fragaria × ananassa Duchesne ex Rozier) was used as a model to study its regulation during fruit ripening. High performance liquid chromatography electrospray tandem-mass spectrometry (HPLC-ESI-MS/MS) was employed to profile 28 different endogenous phytohormones in strawberry. These include auxins, cytokinins (CKs), abscisic acid (ABA), ethylene precursor 1-aminocyclopropane-1-carboxylic acid (ACC), jasmonates, and phenolic compounds salicylic acid (SA), benzoic acid (BzA) and phenylacetic acid (PAA) together with their various metabolic forms that have remained largely unexplored thus far. ABA, ACC and CK N6-(Δ2-isopentenyl)adenine (iP) were found to be associated with ripening while ABA catabolites 9-hydroxy-ABA and phaseic acid mimicked the pattern of climacteric decline at the turning phase of strawberry ripening. The content of other CK forms except iP decreased as fruit ripened, as also that of auxins indole-3-acetic acid (IAA) and oxo-IAA, and of jasmonates. Data presented here also suggest that both the transition and progression of strawberry fruit ripening are associated with N6-(Δ2-isopentenyl)adenosine-5'-monophosphate (iPRMP) → N6-(Δ2-isopentenyl)adenosine (iPR) → iP as the preferred CK metabolic pathway. In contrast, the ethylene precursor ACC was present at higher levels, with its abundance increasing from the onset of ripening to the red ripe stage. Further investigation of ripening-specific ACC accumulation revealed the presence of a large ACC synthase (ACS) encoding gene family in octoploid strawberry that was previously unknown. Seventeen ACS genes were found differentially expressed in fruit tissues, while six of them showed induced expression during strawberry fruit ripening. These data suggest a possible role(s) of ACC, ABA, and iP in strawberry fruit ripening. These data add new dimension to the existing knowledge of the interplay of different endogenous phytohormones in octoploid strawberry, paving the way for further investigation of their individual role(s) in fruit ripening.


Subject(s)
Fragaria , Plant Growth Regulators , Plant Growth Regulators/metabolism , Fragaria/genetics , Fragaria/metabolism , Isopentenyladenosine/metabolism , Fruit/metabolism , Tandem Mass Spectrometry , Plant Proteins/genetics , Plant Proteins/metabolism , Abscisic Acid/metabolism , Ethylenes/metabolism , Indoleacetic Acids/metabolism , Gene Expression Regulation, Plant
18.
Plants (Basel) ; 12(2)2023 Jan 05.
Article in English | MEDLINE | ID: mdl-36678959

ABSTRACT

The horticultural sector is seeking innovative and sustainable agronomic practices which could lead to enhanced yield and product quality. Currently, plant biofortification is recognized as a valuable technique to improve microelement concentrations in plant tissues. Among trace elements, iodine (I) is an essential microelement for human nutrition. Concomitantly, the application of biostimulants may improve overall plant production and quality traits. With the above background in mind, an experiment was designed with the aim of assessing the interactive impact of a seaweed extract-based biostimulant (SwE) (0 mL L-1 (served as control) or 3 mL L-1 (optimal dosage)) and 0, 100, 300, or 600 mg L-1 I on the growth parameters, yield, fruit quality, minerals, and functional characteristics of the tunnel-grown "Savana" strawberry. SwE foliar application improved the plant growth-related traits, total and marketable yield, fruit color parameters, soluble solids content, nitrogen (N), potassium (K), and magnesium (Mg) fruit concentrations. Furthermore, an enhancement in the fruit dry matter content, ascorbic acid, and I concentration in fruits was detected when the SwE supply interacted with a mild I dose (100 or 300 mg L-1). The research underlined that combining SwE application and I biofortification increased the strawberry yield and quality and enhanced the plant nutritional status variation, thereby, determining a boosted strawberry I tolerance.

19.
J Appl Microbiol ; 134(2)2023 Feb 16.
Article in English | MEDLINE | ID: mdl-36639128

ABSTRACT

AIMS: In a field study, the effects of treatments of glyphosate-based herbicides (GBHs) in soil, alone and in combination with phosphate fertilizer, were examined on the performance and endophytic microbiota of garden strawberry. METHODS AND RESULTS: The root and leaf endophytic microbiota of garden strawberries grown in GBH-treated and untreated soil, with and without phosphate fertilizer, were analyzed. Next, bioinformatics analysis on the type of 5-enolpyruvylshikimate-3-phosphate synthase enzyme was conducted to assess the potential sensitivity of strawberry-associated bacteria and fungi to glyphosate, and to compare the results with field observations. GBH treatments altered the abundance and/or frequency of several operational taxonomic units (OTUs), especially those of root-associated fungi and bacteria. These changes were partly related to their sensitivity to glyphosate. Still, GBH treatments did not shape the overall community structure of strawberry microbiota or affect plant performance. Phosphate fertilizer increased the abundance of both glyphosate-resistant and glyphosate-sensitive bacterial OTUs, regardless of the GBH treatments. CONCLUSIONS: These findings demonstrate that although the overall community structure of strawberry endophytic microbes is not affected by GBH use, some individual taxa are.


Subject(s)
Fragaria , Herbicides , Microbiota , Herbicides/pharmacology , Fertilizers , Soil , Bacteria , Fungi/genetics
20.
J Exp Bot ; 74(1): 149-161, 2023 01 01.
Article in English | MEDLINE | ID: mdl-36219205

ABSTRACT

The mannose-binding lectin gene MANNOSE-BINDING LECTIN 1 (MBL1) is a member of the G-type lectin family and is involved in defense in strawberry (Fragaria × ananassa). Genome-wide identification of the G-type lectin family was carried out in woodland strawberry, F. vesca, and 133 G-lectin genes were found. Their expression profiles were retrieved from available databases and indicated that many are actively expressed during plant development or interaction with pathogens. We selected MBL1 for further investigation and generated stable transgenic FaMBL1-overexpressing plants of F. ×ananassa to examine the role of this gene in defense. Plants were selected and evaluated for their contents of disease-related phytohormones and their reaction to biotic stresses, and this revealed that jasmonic acid decreased in the overexpressing lines compared with the wild-type (WT). Petioles of the overexpressing lines inoculated with Colletotrichum fioriniae had lower disease incidence than the WT, and leaves of these lines challenged by Botrytis cinerea showed significantly smaller lesion diameters than the WT and higher expression of CLASS II CHITINASE 2-1. Our results indicate that FaMBL1 plays important roles in strawberry response to fungal diseases caused by C. fioriniae and B. cinerea.


Subject(s)
Fragaria , Lectins , Lectins/genetics , Lectins/metabolism , Fragaria/genetics , Fragaria/metabolism , Genes, Plant , Family , Plants, Genetically Modified/genetics , Plant Diseases/genetics , Plant Diseases/microbiology
SELECTION OF CITATIONS
SEARCH DETAIL
...